Category Archives: Soils

Carbon dioxide, cars and trees

The soil is a great collector or “sink” of Carbon dioxide. Hoiw do we manage this? Could we use CL:AIRE to do it better?

According to the World Resources Institute, “Stopping deforestation, restoring forests and improving forestry practices could remove 7 billion tons of carbon dioxide annually—the same as taking 1.5 billion cars off the road.” Now, World Bank figures on global waste production show that there is somewhere about 1.5 billion tonnes pa of MSW (Municipal Solid Waste).  About half of that would be Carbon which, as Carbon dioxide, would be around 1.4 billion tonnes.  Industrial waste production globally could easily double that, probably more. If that waste was composted, instead of burned or land-filled, it would not only lock up the Carbon, it could be used to fertilise the tree and crop growth.  It would also save wasting at least 21,000 kW hours on producing every one of the 185 million tonnes (FAO figures) of Nitrogen nutrient in the fertilisers we manufacture every year. (Yes, that is 385,000,000,000 kWh – at least!)

Only farmers and foresters have the skills and scale to do these things.  Better respect and care for them.

Bill Butterworth, Land Research Ltd, 28 November 17

Healthier crops, less sprays

mycorrhiza-1p1000825

The wightish areas just off center, upper left are patches of mycorrhizae, just visible to the naked eye. These are the fundamental clue to soil fertility and healthy crops.

 

Closed Loop 6. Organic matter up, crop disease down.

Looking back at this blog entry of 31August 2016 and organic-based soils, we mentioned the closed conduit of the soil fungi, mycorrhiza, feeding at one end of their hyphae on the soil organic matter and the other end either crossing the root hair wall into the plant, or wrapping round the root hair like the placenta of a mammal.  Many of these mycorrhizae have probiotic effects, some have anti-biotic.  Some even have the ability to take nutrients out of one plant, hopefully a weed, and transport it into another, hopefully the crop.  Nearly always, increasing organic matter will reduce crop disease and expenditure on pesticides but it may take several years of higher soil organic matter for the soil biological activity to deliver that. Also see click.

Bill Butterworth, Land Research Ltd, 13 October 2016

Speed the plough

p1010118

Cultivations can be speeded up and with less energy if organic matters can be raised.

Closed loop 5 Saving in cultivation energy. 

There is no doubt that soils which are hit with power (such as with a power harrow) to “force a tilth” suffer loss of organic matter and that, in turn, next season, will demand more power. In field trials recorded by Land Research, a heavy land farm using the mouldboard plough, power harrow, harrow and drill, was measured by tractor hours and number of furrows on the plough. The fields were fed with compost for 6 years and the ploughing finished earlier even when the tractor carried one more furrow.  The power harrow was dropped completely.  The increased organic matter resulted in an average saving in total cultivation time including sowing of over 60 %. Yields went up and were more consistent, year on year.

For more details, click here or put “Survival by Bill Butterworth Amazon” into your search engine.

Soil Organic Matter

Moore Unidrill

The Moore Unidrill’s patents related to keeping the seed sown at the same depth regardless of how much seed is in the grain tank. This direst drill gives an unparalleled even establishment.,

Farmers can get paid to make their own organic fertilisers from urban wastes by composting.  Is it easy and without hassle? Certainly not but it does produce better crops, with lower cultivation costs and higher yields. There is a part way stage and that is to conserve as much organic matter as possible in the soil, including leaving crop residues and minimising cultivations.  In most crops, approaching half the total dry matter of the plant will be below the surface of the soil. Cultivation oxidises organic matter.  Conventional ploughing and power harrowing plus seeding can destroy up to 35 % of soil organic matter per annum.  Direct drilling as little as 10 %. .

For more detail of preserving organic matter and profits, put “Survival by Bill Butterworth Amazon” into your search engine to download details.

Land Research Ltd September 2016

Flood risk, composting urban wastes and Vermuyden

 

P1000752

Flooding has enormous cost but much can be avoided.

The current issue of “The Furrow”, the John Deere journal of April 16, prompted me to think again of my own work on top soil reservoirs and what is beginning to be called bio-engineering in flood control.  Sands will hold about their own weight of water, clay two times, and peat 16 times.  Composts made from urban wastes, including a wide range of industrial wastes, will hold 5 to 15 times their own weight.  Put that into context of the Dutchman, Cornelius Vermuyden, who, in the 1650’s drained the flats of East Anglia. He knew that there had to be not only big, straight dykes but also sacrifice flood zones which were adequately boundaried and with enough capacity to take the worst water emission flow rates from the higher land.  Now increase the organic matter levels of all the soils in the catchment area.  Finally, plant grass, herbs, shrubs and preferably trees and do so at all levels right up to the highest.  The cohesive effect of roots and the evaporation by active plants will buy time to even out the flow to what the lower water courses, adequately dredged, can cope with. As global warming increases extremes, we need to match that, preferably before the event, with buffers that even out flow rates.

Bill Butterworth  13 April 2016

Also see, “How to make on-farm composting work”, by Bill Butterworth, published by MX Publishng, London.

 

Shale and farming

 

OSR Roundway

Fertilisers will go up and down in cost but with very little down. One source of nutrients and extra top soil is the cuttings from deep drilling.

Generally speaking, the cuttings and spent fluids from deep drilling contain some plant nutrients.  It depends on the strata but commonly there is phosphate, maybe a little potash and some trace elements.  Not much but rarely none at all. Why truck that somewhere else when it could be spread on the field next door? This is true whether it be deep drilling for geothermal heating, a search for water, trenching for a pipeline or searching for shale gas or oil.

By all means test for anything that might be dangerous if present and if it is, burn some diesel fuel in a truck on local roads, take it somewhere else and dispose of it by locking it up somewhere. On the evidence we have, generally speaking that will not be justified. But still do the testing and ask an independent body such as the British Society of Soil Science and/or the Institute of Geology to judge and to advise.

Bill Butterworth  10th April 2016

 

 

The Price of Bread

Bread

Feeding everyone is technically possible BUT not without some dramatic changes. Suppose we do not feed everyone?

 

The circular economy: 6. Population, resources and the price of bread.

 The science: As population rises, resources will become rarer or in shorter supply.  That will not only put prices at the retail shop up, they will fluctuate progressively more.

The bad news: In rich countries, commodity prices will certainly go up.  In poor countries, prices will go up too far for survival and people will either die of migrate.

The good news: Population rate of increase is falling (but most observes would agree we must do more). As an agricultural scientist, I do believe that we have the technology to feed the world provided we stop breeding people right now.  Feeding a greater population will certainly increase resource use and that means we have to dramatically increase efficiency as well as total output.

Bill Butterworth 26 March 2016

P.S. Try the book, “Reversing global warming for profit”, by Bill Butterworth, published by MX Publishing, available from all good bookshops or on line at Amazon.